심사의견 전체 오류임을 입증하는 다음 두 가지를 조사하라.
X=(2AB)1/2+A, Y=(2AB)1/2+B, Z=(2AB)1/2+A+B
상기 공식은 c2=A=Z-Y, 2d2=B=Z-X 일 때 X=2cd+c2, Y=2cd+2d2, Z=2cd+c2+2d2 같이 된다.
위 공식은 c+d=r 일 때 X=r2-d2, Y=2rd, Z=r2+d2 같은 기존 공식이 된다.
아펠과 하켄의 1976 년경 4색 구분 정리 증명은 1200시간 컴퓨터작업이 필요하고,
“귀하께서는 감사원에 민원 (접수번호 제2009-08868, 08881, 08955호)를 제출하셨습니다.
첫째, 논문심사의견 전체오류이며 편집장이 잘못된 주장만 반복하고 07.1.5.이후 회신도 없다.
둘째, 부당업무 고발에도 자체 내부 감사를 실행하지 아니 한 잘못을 하고 회신도 없다.
셋째, 주무관청의 성의를 가지고 답변하라는 요청도 무시하는 잘못을 하고 회신도 없다.
[증명] 한 점에 접하는 지역들 중에서 한 지역을 선택할 때, 이 선택된 지역에 접하는 주변의 모든 지역들은 2색으로 충분히 구분되기 때문이다.
[증명] 한 지역 내의 한 점과 주변 지역들의 경계선들이 한 지역의 경계선과 만나는 점들을 연결할 때, 이 지역들은 결국 한 점에 접하는 지역들과 마찬가지로서 3색으로 충분히 구분되기 때문이다.
[증명] 한 지역에 접하는 주변의 모든 지역들은 3색으로 충분히 구분되기 때문이다.
2 가지 방법의 페르마 정리 증명
Xn+Yn=Zn
A=Z-Y, B=Z-X
X=G(AB)1/n+A, Y=G(AB)1/n+B, Z=G(AB)1/n+A+B, X+Y-Z=G(AB)1/n
{G(AB)1/n+A}n+{G(AB)1/n+B}n={G(AB)1/n+A+B}n
n=1 일 때, G=0 이고, n=2 일 때, G=21/2>0 임.
X=(2AB)1/2+A, Y=(2AB)1/2+B, Z=(2AB)1/2+A+B
c2=A=Z-Y, 2d2=B=Z-X 일 때,
X=2cd+c2, Y=2cd+2d2 and Z=2cd+c2+2d2
c+d=e 일 때, X=e2-d2, Y=2ed, Z=e2+d2.
Xn+Yn=Zn
(Xn/2)2+(Yn/2)2=(Zn/2)2
a=Zn/2-Yn/2, b=Zn/2-Xn/2
{G(ab)1/2+a}2+{G(ab)1/2+b}2={G(ab)1/2+a+b}2
G=21/2>0
Xn/2=(2ab)1/2+a, Yn/2=(2ab)1/2+b, Zn/2=(2ab)1/2+a+b
Xn={(2ab)1/2+a}2, Yn={(2ab)1/2+b}2, Zn={(2ab)1/2+a+b}2
{G(AB)1/n+A}n+{G(AB)1/n+B}n={G(AB)1/n+A+B}n
위 식에서 A=B 일 때, G=[{2(n-2)/n+…+21/n+1}n{2A(n-2)}]1/n 을 구할 수가 있고,
상기의 식들을 이용하여, 모든 자연수 A, B에서
G(AB)1/n 이 절대로 자연수가 될 수 없음이 증명된다.
)을 클릭하여 새로운 프로젝트를 생성하기만 하시면 됩니다. 새 프로젝트에 대한 설정 창에서 “Project Name”에는 



























































































